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Abstract-We compare building thermal behaviour as obtained from experiment and from a physical 
model. Experimental data are analysed by use of an identified model, decomposed as a sum of first-order 
models. The physical model is reduced to an equivalent form by use of its eigenelements. This method 
provides an intrinsic basis for comparison. Analysis showed that the dynamic behaviour of the building 
could only be explained by using a two-dimensional model for conduction in one of the walls; the agreement 

between experimental data and theoretical model was then quite good. 

INTRODUCTION 

VALIDATION is always a crucial step in the develop- 
ment of physical models; this is especially true in 

building physics, with the recent trend to develop huge 
modular simulation tools, and the need for reliable 
elementary models. Still, validation is often made on 
an ad hoc basis, giving no precise idea of the real 
discrepancy between model and measure, and little 
insight as to the cause of this discrepancy. 

In this paper, we use model identification and spec- 
tral analysis to analyse the content of, respectively, 
experimental data and theoretical models. This 
approach provides an intrinsic basis for comparison 
and can be applied to any linear or linearized model ; 
it can also give some indication as to how an incorrect 
model should be modified. 

Model identification techniques have been of con- 
stant use in automatics or in process engineering but 
their introduction in building thermics is relatively 
recent ; theoretical [I, 21 as well as experimental [3,4] 
work has shown that the global thermal behaviour of 
a building can be reasonably represented by low-order 
linear models. Model identification is generally used 
to obtain operative models; here we contend that it 
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is also an efficient way to explore the informational 
content of experimental data, in a context of linear 
systems theory. 

Spectral decomposition is a classic way to analyse 
and solve sets of linear differential equations through 
diagonalization of the system : as such sets of equations 
appear naturally in many domains of physics by dis- 
cretization of partial differential equations [5], it is not 
surprising that the method has been widely used and 
commented upon, especially in the area of vibration 
analysis. It has also been used in solving heat transfer 
problems (such methods as integral transform or vari- 
ables separation are closely related [6]); the appli- 
cation to complex systems such as buildings is more 
recent [7,8]. 

Here, the model to be analysed relates the tem- 
perature inside a building to externally imposed tem- 
perature and heat flux conditions, or excitations. 
Experimental data were obtained on real-size exper- 
imental building cells. 

THE TEST CELLS 

The E.T.N.A. test cells are a facility of the Research 
Centre of Electricite de France at Les Renardieres [9] 
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FIG. 1. The E.T.N.A. test cells. Numbered walls are referred to in the text. 
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NOMENCLATURE 

A dynamic matrix TC temperature outside building [“Cl 
B excitation matrix U static heat loss coefficient 
E vector of excitations z variable in z-transform 
c matrix of thermal capacities z- ’ delay operator. 
G static gain of identified model 
I1 transfer function 
H matrix of transfer functions Greek symbols 
n eigenvector P static gain of theoretical model 
N matrix of eigenvectors A time step 
P heating power [kW] eigenvalue 
T vector of node temperatures Ii diagonal matrix of eigenvalues 
T temperature inside building [“Cl T time constant. 

(Fig. I). This is a real-size building, including two 
identical symmetrical cells, surrounded by controlled 
volumes. By use of removable external partitions, the 
cells can be submitted to a partially or totally artifical 
climate. Extensive data acquisition and processing 
capabilities are provided. 

For the present experiment, the cells were put in 
a totally artificial climate (particularly no solar 
radiation), with an electrical internal heat source. Data 
were taken at IO min intervals, then digitally filtered 
and sampled with a time step A = I h. The cell internal 
temperature was taken as the mean of five dry-bulb 
temperatures at different levels ; external temperature 
was taken as the mean of surrounding volumes tem- 
peratures ; internal heating power is the average power 
over the time step. 

EXPERIMENTAL RESULTS AND 
MODEL IDENTIFICATION 

The test sequence (Fig. 2), whose initial objective 
was to obtain a simple characterization of the test cells 
[IO], consists of a classic step input applied to heating 
power; the temperature of the surrounding volumes 
was kept nearly constant, but due to the fact that no 
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FIG. 2. Experimental temperatures. 

cooling apparatus was yet installed, it was not possible 
to avoid a drift of up to 2°C during the heating period. 
Both cells react in much the same way, and we shall 
subsequently refer to one of the cells only. 

A direct treatment of these measurements gave a 
static heat loss coefficient (U-value) of U = 53.1 W 
“C- ’ and a main time constant (as obtained from a 
linear regression on the logarithm of reduced tem- 
perature) T = 23 h. 

A more sophisticated treatment consists of using 
identification techniques, which enables us to obtain 
a more complete description of the physical system, 
and also to take into account minor defects in the 
experiment such as the external temperature drift. 

The identification procedure we use is based on 
a sampled linear systems representation [I I], using 
transfer functions in the variable z-’ to relate the 
internal temperature Ti to excitations, namely external 
temperature T, and heating power P. The transfer 
functions are modelled as polynomials, the coefficients 
of which are determined by non-linear least squares 
minimization. The determination of the correct poly- 
nomial order is made through a complex decision- 
making process, making extensive use of auto-cor- 
relation and cross-correlation analysis and statistical 
tests [l2]. Using this procedure implies that the form 
of the model will be dependent on the information 
content of the data, and may vary from one experi- 
ment to the other. Thus we are more interested in the 
physical information that can be extracted from an 
identified model than in its overall representativity. 

For the present experiment, the identification pro- 
cedure gave the following transfer function model : 

(I - 1.6304z-‘+0.6431~-~)T(“C) 

= 0.0127T,(“C)+(3.182-2.948z-‘)P(kW) (1) 

with a residual mean-square error e = 0.26”C, which 
shows that this model achieves a very good fit to 
experimental data. 

Of course, given the experimental conditions, this 
model does not provide much information about the 



Spectral decomposition in the thermal analysis of buildings 647 

dynamics of the response to external temperature, A classic transformation [14] is to use the square 
and we shall therefore concentrate on the response to root matrix of C (c,“‘) to perform a change in variables 
heating power. 

This response is characterized by the second-order 
x= C”2.T 

transfer function which transforms the differential system into the stan- 

3.182-2.948z-’ dard form 

I -1.6304~-‘+0.06431~-’ k= F*X+G*E (4) 

which can be decomposed as whereF=C-‘~*.A.C-“*andG=C-“*.B. 

2.799 0.3827 
The main advantage of this transformation is that 

1-0.6687~~’ + I-0.9617z-‘. (2) it preserves the symmetry of the dynamic matrix F: 
the eigenvalues (1,) of Fare thus real, negative, with 

Expression (2) shows that this response is the sum of corresponding eigenvectors (n,) forming an ortho- 
two first-order systems; each of these systems can be normal complete set, which means that the matrix N 
characterized by a time constant 7 and a static gain G, with ith column the ith eigenvector ni has the prop- 
both parameters being readily related to the transfer erty: N-’ = NT. 
function expression The transformation of (4) into the base of eigen- 

i 

emA” = 0.9617=7, = 24.9h; G, = 8.45”CkW-’ 
vectors gives a set of decoupled first-order differential 
equations 

emAIr, = 0.6687=>7? = 2.48h; G2 = 9.99”CkW-‘. 
NT*?= (NT*F*N)*NT*X+(NT*G).E 

We see that this analysis exhibits two very different 
time constants, corresponding to roughly the same 

=i=A*x+g.E (5) 

proportion of the global static response. The inverse where A = (A,) is diagonal. 
of the sum of the static gains is the global C/-value for Taking the Laplace transform of (5) gives 
the identified model 

p-x* = h*x*+g.E* 
1 

LIE-----C 
G, +G2 

54.3w”c-‘. G-X* = (p-I-A)-‘*g-E* (6) 

The above analysis could be extended to any trans- 
where (PI-A)- ’ is the diagonal matrix with diagonal 

fer function model : an nth order model relative to a 
elements I/(p-1)). 

given excitation would be expressed in terms of n 
Thus, in the Laplace domain, the solution of the 

doublets (time constant, static gain). 
original system (3) is 

This kind of representation for a linear dynamic T* = C- Ii* .X* = C-“‘.,,,. y* 

system, which corresponds to a decomposition in 
elementary independent systems, is a spectral rep- 

=C-‘“.N.(p-I\)-‘.N*.C-‘/*.B.Et 

resentation and provides a convenient way to sum- = H* E*. (7) 
marize the behaviour of the system. It should be noted 
that this representation can be obtained in a straight- 

The elements of the matrix Hare given by a straight- 

forward fashion from a classical so-called ARMAX 
forward, if tedious, calculation 

model ; it is not necessary to set any special form for 
the model to be identified. “*c,- “‘n, rqk b,j (8) 

SPECTRAL ANALYSIS FOR A PHYSICAL MODEL 
which we rewrite 

A typical model for heat transfer in a building (9) 
[ 131, using finite-differences schemes for conduction 
through walls and linearizing the transfer equations where 
at wall surfaces, will yield a set of ordinary differential 
equations 

Cm?= A.T+B.E (3) (10) 

where T is a vector of temperatures at the different 
‘nodes’, E is a vector of excitations or externally h, is the transfer function between a given excitation 
imposed conditions and B a corresponding influence e, and the temperature of a given node Ti; we see 
matrix, C is a diagonal matrix of thermal capacities that h, is the sum of first-order transfer functions, 
(ci), and matrix A is symmetric (because of the reci- characterized each by a time constant 7k and a static 
procity of conductive, radiative and convective heat gain /?:. 
transfer equations) and definite negative (because of Thus, the behaviour of a system described by a set 
the Second Law). of differential equations like (3) can be described by 
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establishing for each excitation j a spectral map 
(Ta, Pt) of the transfer function decomposition, which 
gives for each temperature node i the influence of each 
mode k. This representation is of the same kind as 
the one we derived from an identified sampled linear 
model. Application of this analysis to the test cell 
described before will provide a common basis for 
comparison to experimental data. 

THEORETICAL ANALYSIS OF THE TEST CELL 

A discrete model for the test cell was obtained with 
the following assumptions : 

(1) the air inside the cell is at a uniform tem- 
perature ; 

(2) transfers in walls are unidimensional and cal- 
culated through a finite differences method ; 

(3) convective and radiative heat transfers at wall 
surfaces are linearized and globalized by use of an 
equivalent heat transfer coefficient. 

A complete description of geometry and wall 
characteristics can be found in ref. [ 151. 

The global model consists of seven conductive walls 
of varying complexity and one air capacity. 

The discretization of heat conduction equation was 
made in the following way: an initial repartition of 
nodes was empirically chosen, and the number of 
nodes in each wall was then doubled until the results 
of modal analysis exhibited no significant differences. 
This led to a 65 nodes model for the test cell. 

Diagonalization of matrix F in equation (4) was 
performed by reduction to tridiagonal form and QR 
algorithm [16]. This provided the total set of eigen- 
values and corresponding eigenvectors. The spectral 
maps (TV, /I$) could then be computed for any given 
node and any specific excitation by simple operations. 

To be compatible with the results of the experiment 
described above, we shall only analyse the results rela- 
tive to the internal air node, with internal heat flux 
the specified excitation. 

COMPARISON OF THEORETICAL AND 

IDENTIFIED MODELS 

The spectral map for the response of internal air 
temperature to heating power for the model described 
above shows that, of all 65 modes, only a few have a 

Table I. Composition of the four main modes in Fig. 3 

Percentage 
of total 

Mode T (h) /I (“C kW- ‘) response (%) 

65 72 0.98 6 
64 28 5.19 36 
63 14 3.71 23 
59 0.91 3.58 22 
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FIG. 3. Spectral map of the response to heating power. 

significant contribution (Fig. 3); four main modes can 
be identified (Table I). 

Other modes have smaller individual contributions 
which add up to 13% of the total response: most of 
these modes correspond to very fast dynamics and 
could be merged into a single instantaneous response; 
a few other modes cluster around the 1 h values and 
could be regrouped with mode 59. 

As such, the theoretical model exhibits some impor- 
tant differences with the identified model. 

Visualizing the different eigenvectors can help 
understand the behaviour of the model; an eigen- 
vector is a set of values, each related to a given node : 
if nodes are numbered in a convenient way, a plot 
of the eigenvector values vs node number provides 
a unidimensional distribution through the different 
elements (walls) of the model. 

Analysis of the eigenvector corresponding to the 
72 h value (Fig. 4) shows that this mode is mostly 
dependent on the presence of wall 1, which is indeed 
a very heavy structure (spine wall). We can admit that 
this mode did exist in the experiment, but was not 
evidenced due to a relatively short experiment dur- 
ation (only twice the time constant), and also because 
this mode is only responsible for 6% of the total 
response. 
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FIG. 4. Eigenvector for mode 65. 
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FIG. 5. Eigenvectors for modes 63 and 64. 

On the other hand. the following modes (14 and 28 
h) are sufficiently important and sufficiently distinct 
that they should appear in the identified model. 

Analysis of the corresponding eigcnvectors (Fig. 5) 
shows that both modes are related to walls 4 and 5, 
with a positive coupling for the first and a negative 
coupling for the second; the positive-coupled mode 
corresponds to a situation where both walls evolve in 
the same way (say both walls are heating up sim- 
ultaneously), while the negative-coupled mode rep- 
resents a situation where the walls evolve in opposite 
ways (one being warmer and the other colder, and 
heat flux circulating from one to the other through 
the air node). 

In this initial model, walls 4 and 5 both correspond 
to the floor: this is a composite structure, with a con- 
crete slab on concrete beams, the interval between 
beams being filled with polystyrene (Fig. 6). 

Heat transfers through the concrete beams and 
through the isolated part are of the same magnitude ; 
thus it is not possible to neglect any one of these 
two structures, and they have been modelled as two 
independent unidimensional walls. In the global 
model these two structures are weakly coupled 
through the internal air node, and generate two 
distinct modes. 

This hypothesis can be verified by removing one of 
the two structures from the global model: the set of 
corresponding modes also disappears, leaving each 
time only one time constant around 20 h (25 h in the 
first case, 17 h in the second). 

In reality, the physical coupling between the two 
structures is much stronger and more distributed ; it 
is logical to think that this coupling merges the two 

FIG. 6. Structure of the floor. 
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FIG. 7. Spectral map for two-dimensional model. 

corresponding modes into one mode with inter- 
mediate value for the time constant. Also, it is clear 
that a distributed coupling will tend to prevent the 
appearance of the negative-coupled mode mentioned 
above. 

To verify this, we made a two-dimensional model 
of the floor, using a classic finite-difference scheme ; 
the equations corresponding to this model are inte- 
grated to the global model in replacement of those for 
walls 4 and 5, and the same analysis as above is still 
possible. 

The spectral map for the response of the internal 
air node temperature to internal heat flux shows 
indeed that this response now consists of three main 
modes (Fig. 7 and Table 2). 

The last mode has been previously discussed ; com- 
parison of the first two modes with those for the 
experimentally identified model shows a good agree- 
ment for the ‘slower’ mode. The rapid mode for the 
theoretical model has a time constant of 0.98 h instead 
of 2.48 h for the identified model, and, probably more 
important, it also has too small a static gain, even 
considering the total contribution of the remaining 
secondary modes: this means in turn that the global 
static heat loss coefficient for the model is higher than 
the measured one (Lr = 0.60 W “C- ‘). 

This last defect of the model is not rare in building 
thermal analysis, and is easily corrected by small 
changes on the conductivities of materials, or on the 
convective-radiative heat transfer coefficients, all 
values seldom known to a high degree of precision. 

Unfortunately, at this point, nothing in the above 
analysis indicates which coefficients should be modi- 

Table 2. Composition of the three main modes in Fig. 7 

r (h) p (“C kW- ‘) 

Percentage 
of total 

response (%) 

23.4 9.50 58 
0.98 3.66 23 

71.5 0.99 6 
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fied: in fact, there are probably too many ways to 
achieve the desired correction. Also, the coupling 
between the different parts makes it difficult to predict 
in which way the system will react to a change in some 
element. 

CONCLUSION 

We have shown how spectral analysis can help us 
compare experimental and theoretical models ; it can 
also help us investigate the reasons for discrepancies 
between experiment and theory. 

Still, many problems remain to be solved: for the 
example presented above, we can raise at least two 
questions : 

(1) the theoretical model presents some very fast 
modes and one very slow mode : do these modes exist 
in reality and could they be observed, or are they just 
artefacts due to the oversimplification of the model? 

(2) while global agreement between model and 
reality seems good, some final adjustments remain 
necessary : how are these to be conducted? 

The answer to the first question can only be sought 
experimentally, but we feel that very fast modes are 
introduced by the simplification of convective trans- 
fers and are not physically present; should they be, 
they would appear as an instantaneous response to 
heating (according to the model, they would represent 
13% of the total response). 

As to the second point, it could be suggested to 
perform final adjustments through identification tech- 
niques ; but as mentioned above, the number of 
coefficients to adjust is so large that the optimal solu- 
tion found this way would be meaningless : the exper- 
imental data do not contain the information necessary 
to determine all the parameters. 

An expert kind of approach seems more promising ; 
such an approach could be aided by such tools as 
sensitivity analysis : by analysing how the model reacts 
to changes in the parameters, some information can 
be gained as to its capacity to better adjust to exper- 
imental data. 

Clearly, such a sensitivity analysis can be more con- 
veniently conducted using spectral representation, 
and we intend to develop such tools in the near future. 
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